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Abstract o
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: {f.
This paper develops an equilibrium theory for two-person two-criteria N
"_\.
stochastic decision problems with static information patterns, wherein the o

decision makers (DM's) have different probabilistic models of the underlying

process, the objective functionals are quadratic and the decision spaces are

general inner-product spaces. Under two different modes of decision making

(viz. symmetric and asymmetric), sufficient conditions are obtained for the

existence and uniqueness of equilibrium solutions (stable in the former case), and in
each case a uniformly convergent iterative scheme is developed whereby the equilibrium
policies of the DM's can be obtained by evaluating a number of conditional
expectations. When the probability measures are Gaussian, the equilibrium solution

is linear under the symmetric mode of decision making, whereas it is generically
nonlinear in the asymmetric case, with the linear structure prevailing only in

some special cases which are delineated in the paper.
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1. Introduction

A team is defined as a group of agents who work together in a
coordinated effort, in a possibly hostile and uncertain environment, in order
to achieve a common goal. 1In achieving this goal, the members of the team
do not necessarily acquire the same information, and hence they have to operate
in a decentralized mode of decision making. The scientific approach to
formulation and analysis of team problems has involved (i) a quantification of
the underlying common goal in the form of a (mathematical) objective function
which is sought to be optimized jointly by the agents, and (ii) a modeling
of the uncertain environment and the possible measurements made by the agents
on this environment in the form of a probability space together with an
appropriate information structure [14,7,15,16]. The underlying stipulation here
has been the existence of a probability space that is common to all the agents,
so that through their priors all members of the team "see the world" in exactly
the same way.

One question that readily comes into mind at this point is the
robustness of such a mathematical model, and the "optimum" solutions it produces,
to slight variations in the underlying assqutions. In particular, what if the
agents perceive the outside world in slightly different ways? Would the

solution obtained under the assumption of common prior probability measures

change drastically if there are discrepancies in the agents' perceptions of the
probabilistic description of the outside world? 1In order to be able to answer
these queries satisfactorily and effectively, we need a theory of equilibrium
for decision problems in which the decision makers (DM's) have different

probabilistic models of the svstem; such a general theory will clearly subsume

the currently available results on teams which use a common probability space.




Consider a static team decision problem, formulated in the standard
manner as in [7], with the only difference being in the underlying probability
space. In particular, assume that the DM's assign different subjective
probabilities to the uncertain events, in which case there will not exist a
common probability space, thereby leading to a different expected (average)
cost function for each DM. Hence, once we relax the assumption of existence
of a common probability space, the team problem is no longer a stochastic

optimization problem with a single objective functional, and we inevitably

have to treat it as a nonzero-sum stochastic game [5,8,12]. Furthermore, even

though the original team decision problem with a common probability space

will admit the same team-optimal solution(s) regardless of the mode of

decision making (that is, regardless of whether the roles of the DM's are
symmetric or whether there is a hierarchy and dominance in decision making),
this feature ceases to hold true when there exists a discrepancy between the

perceived probability measures. When there are only two members, for example,

. e

two possibilities emerge in the presence of discrepancies: the totally
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symmetric roles, corresponding to the Nash equilibrium solution, and the

o

hierarchical mode, corresponding to the Stackelberg equilibrium solutien.
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Motivated by these considerations, we treat in this paper a more
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general (than team) class of two-person stochastic decision problems which
can be viewed as static stochastic nonzero-sum games with the DM's having
different subjective probability measures. Adopting both the svmmetric and
asymmetric modes of decision making, we develop in each case a general

theory of equilibrium when the objective functionals are quadratic and the
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decision spaces are appropriate Hilbert spaces. Such a formulation includes both

finite-dimensional (discrete) and continuous-time decision problems, and involves
arbitrary probability measures which are, though, restricted a posteriori by the
conditions of existence and uniqueness developed in the paper. The special case of
Gaussian distributions 1is studied in considerable depth, and some explicit solutions
are obtained with appealing features.

The organization of the paper is as follows. The next section (§2)
provides a precise problem formulation, and introduces the two solution concepts
adopted in the paper. Section 3 develops general conditions for existence and
uniqueness of a stable equilibrium solution under the symmetric mode of decision
making, and elucidates the extent of the restrictions imposed on the problem by
these conditions. Section 4 presents a counterpart of the results of Section 3
under the asymmetric mode of decision making, with the mathematical machinery
used being inherently different from that of §3. Section 5 deals with the special
class of Gaussian distributions, under both symmetric and asymmetric modes of
decision making. In the former case it is shown that the unique stable equilibrium
solution is affine in the measurements and can be obtained explicitly. 1In the
latter case, however, the solution is generically nonlinear, and contains summation
of terms which involve products of linear functions of measurements with exponential
terms (whose exponents are quadratic in the measurements). The section also contains
some discussion on finite-dimensional and continuous-time problems, treated as
special cases. Section 6 is devoted to discussions on possible extensions of

these results in different directions, provides some interpretation of the

general approach and results, and includes some concluding remarks. The paper ends

with five Appendices which include results used in the main body of the paper.
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2. Mathematical Formulation and Some Basic Results

[\
(3N

rrobability Spaces

n m ™28
Let =R x R Xx R = X x Yl x YZ’ B denote the Borel field

of subsets of @, and Bk denote the Borel field of subsets of I{k, k = n, my, MWy

Let P denote the set of all probability measures on (Q,B) with finite second

moments, and for each PEP denote the corresponding marginal measures on
my m, :
and B © by Px’ Py and Py , respectively. Furthermore, let the
1 2
collection of all such probability measures be denoted by Px, Py and Py s
1 2
respectively. Then, for each PEP, the vector z = (&7, yi, yé)’, taking values

8", B

in 2, becomes a well-defined random vector on (2,B,P), and likewise x is a

m. m,
n ,n . i i
random vector on (R, B ’Px) and y; is a random vector on (R ~ ,B ",P ).

Vi
Here, x denotes the unknown state of Nature, and vy denotes an

observation of DMi (i'th decision maker) which is correlated with x. We now
1

choose two elements out of P, P~ and Pz, which denote the subjective probabilities

assigned to z by DMl and DM2, respectively. For technical reasons, we place

some further restrictions on the choices of Pl and P2 through the marginals

Pi ;5 in particular we assume that
3o 1 2 2
Condition f:).Py and Py are absolutely continuous [l1] with respect to Py
2 1 2
and P; , respectively; that is, using the standard notation in probability
1
theory,
P1 < < P2 . P2 < < P1 . (1)
72 72 Y1 Y1

Conditicn .Z). The Radon-Nikodym (R-N) derivative [1]

Teey = gpd i s
g (§) = dpyi / by, j#i , (2)
1

y i=1,2.

is uniformly bounded a.e. Pi
v

o2 R
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Lemma 1. Fi is a Hilbert space. e

Lemma 2. If Conditions (1) and (2) are satisfied, every element of I, has

The necessity of these two conditions in the formulation of our problem will be
made clear in the sequel. We should note, however, that for the special case
when Pl is equivalent to P2, both of these conditions are satisfied (in the latter
case the bound is equal to 1) and we have the standard decision theoretic framework

[2] with a single probability space.

2.2. Decision and Policy Spaces
The decision variable of DMi will bhe denoted by ug which belongs to a

real separable Hilbert space Ui with inner product (',')i. Permissible policies

(decision rules) for DMi are measurable mappings

my

12 pl
Y:r RO U I"vim"ip}l,i(ds) < w (3)

where “-"i is the natural norm derived from (-,-)i. Let Fi denote the space of

all such policies, which is further equipped with the inner product

<8 > = [ ((0),8(0); P (d8) . )
¥, i

Then, we have the following two results the first of which is standard (3] and

the second one involves a change of measures using the R-N derivative.

bounded second-order moments also under P> , j#i.
71
2.5. Cos*t Funeticonale

Let D;j: Uj - Uj (i#j, 1,j=1,2) be strongly positive bounded linear
operators, and F}: X > Uj be bounded linear operators for all i,j=1,2.

A, i . .
Furthermore, let E' [u (:)!yi] denote the mathematical expectation of a

*That is, there exists 2 > 0 such that (U’D;ju)j > a(u,u)j for all
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. i . .
z-measurable random variable u" (z) taking values in Ui conditioned on the

g i
random variable Yoo and under the probability measure P, i.e.

i
Elu)]|y,] = fu(z)P%y.(dz

v.) (5)
Q 173 .

where the second term of the integrand is the conditional probability measure

'}33 derived from P . Then, for each pair (Yl’YZ) € Fl X Fz, we have a quadratic expected}
e
- cost functional for each DM, defined for DMi by g
‘,‘\._: ,
3 J(Yy5Y,) = l'<Y Y2, + i [ (v (®), D%.Y.(E)). pl (dg) - <¥,» Ei[FiX‘y-]>i
N it'1?7'2 2 'i'iTi 0 2 3 R 333 j yj 1 1
- 3 (6)
. i iod
- - [ (5, Fix) PR(dx,Y,dE) - <y, EOIDLY () |y 1>y

XxY . ] j ] 1 ]3] ]

J

g every term of which can be shown to be finite, in view of Lemmas 1 and 2. Note
. that in the absence of Conditions (1) and (2),Ji is not necessarily finite and
hence the problem is not well defined.
{
It is worth mentioning here that Ji describes a most general type of ;
) quadratic cost functional which is strictly convex in uss and that the formulation
$¥i here covers also the cases of team problems :
3 i 1 _owi :
"“5 (Djj =1, D, = 21: i = Fi, i,j=1,2, i#j) and zero-sum games
; *
;{i (D;j = -1, Diz = - Dgl’ Fi = - Fi, 1,j=1,2, i#j). But even in these "single :
;;? loss-functional" problems, the DM's will have inherently different expected ’
F{ cost functions whenever P and P? are different, since then a common probability
space does not exist. This forces us to formulate the problem as a multi- S
criteria optimization problem and introduce equilibrium solution concepts that
- would be appropriate in this framework.
i:: ;A superscript (*) designates the adjoint of a given linear operator
“ﬁb‘ defined on a Hilbert space, and 1 designates the identity operator.
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2.4. Equilibrium Solution Under the Symmetric Mcde of Decision Making

Since the

expected cost functiomals (6), together with the policy spaces,

provide a normal (strategic) form description, regardless of the presence of

multiple probability measures, the standard definition of noncooperative (Nash)

equilibrium [5] remains intact, which is the most reasonable solution concept

here under the symmetric mode of decision making.

Definition 1. A pair of policies (Yi,y;) € Fl X F2 constitutes a Nash equilibrium

solution if

o] (o]
Jl((l,{z

o}

0 (

(Yl )

where

o o0 (o}
' (S (S

v}
Definition 2. A Nash equilibrium solution (Yi,y;) is stable if for all
0)
€
) Fl X F2,
tim v =, inr,  ,  i=1,2, (8)
i i i
k>
(k) _ . (k-1) (9a)
Y, = = arg min I (Y, )
r
1
k-1
Yék) = arg min Jz(Yf ),yz) , k=1,2. . . . . (9b)
r
2
a
. The notion of stable equilibrium makes particular sense (and is of

Remark 1

paramount importance) in decision problems wherein the DM's have different priors

on the uncertain quantities, because it is determined as the outcome of a natural

iterative process.

In this process, each DM responds optimally (using his priors)

to the most recent decision (policv) of the other DM, with the priors on which

this decision is based being irrelevant. In other words, even though the computation

of the Nash equilibrium solution will depend on the different prior probabilityv

P

I N T I
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- ures perceived by two DM's, in the iterative procedure that leads to this )
" equilibrium each DM has to know only his own prior and the other one's announced -
o policy at the previous step. For an earlier utilization of this concept in a -
-;{ deterministic setting we refer the reader to [28]. » B
o -J
iy

. 2.5. Egquilibrium Solution Under an Asymmetric Mode of Decision Making =
o " 1In the case of the asymmetric mode there is a hierarchy in decision

‘f~ making, which permits one DM (say DMl—Ieader) to announce and erforce his policy ;3
Y on the other DM (follower). The relevant solution concept here is the leader-~ R
S follower (Stackelberg) solution which is introduced below.

o . . s s - . B
k- Definition 3. A pair of policies (Yl,yz) € Tl x T, constitutes a leader-follower ;é

(Stackelberg) equilibrium solution with unique follower responses, if there exists

N a unique mapping T,: I'; » [, satisfying N
-
N - N , . e r r T
] Ty G Tyl 1) 2 3,0 ) 5 ¥y, €Ty x T, (10) o
e and furthermore _
SINCHUS 3 S8 DEEIN MG 4 P20 D vy, €T (11)
1Y'1°72 - 7171’2t ’ 1 1 -
with )
-" e S = \'s \~:
i
ok Remark 2. The uniqueness condition on T2 is satisfied in our case, because J, is =
o strictly convex (and quadratic) in Yo C )
- Remark 3. The solution introduced above may not, at first glance, appear to be an ;i
?g equilibrium solution, because of the strict ordering of the DM's. However, it can )
) be shown, by following an argument first developed in [17], that the Stackelberg o
- solution can be viewed as the so-called "strong equilibrium" cf a decision problem o
N
- with a modified (dynamic) information pattern [see Appendix Ej. z
- :\
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3. General Conditions for a Stable Equilibrium Solution
" Under the Symmetric Mode

.' We now obtain some general conditions for existence of stable equilibrium
) solutions under the symmetric mode of decision making, and also consider some
e
;'1 special cases when the probability measures of both DM's are absolutely continuous
with respect to the Lebesgue measure (i.e. when densities exist). Firstly we have
- Proposition 1. A pair of policies (Yi’YZ) € Fl X FZ constitutes a Nash equilibrium
?: solution to the decision problem of §2, if, and only if, it satisfies the pair of
h:'
equations (under the notation of (5)):
k7
o o 1 1,0 1.1
v (yy) = D], E [Yz(yz)lyl] +F E [XIyll (12a)
- 0 _n2 2.0 2 2
Yo (y,) = Dy ETly; 5y, + Fy B Ixy,). (12b)
W
Proof. This result follows from a simple minimization of the two quadratic forms
o o . .
i Jl(Yl,Yz) and Jz(yl,yz) on the two Hilbert spaces Fl and Fz, respectively, and by
virtue of the fact that these two quadratic forms are positive definite in the
3; relevant variables. o
'! By the same argument used in the proof of Proposition 1, relations (9a)
KN and (9b) in Def. 2 can equivalently be written as
(k) 1 1. (k-1) 1.1
-~ =
Y Yq D/, E [Y2 (yz)lyl] + Fl‘E [x]yl] (13a)
~ k) _ 2 2. (k~1) 2 2
B 0 =Dy ETlvy Oy )+ Fy Eolxly,] L, k=l,2, .. .. (13b)
:} Now, substituting (13b) into (13a), and also (13a) into (13b), by appropriately
NS
matching the superscripts, we arrive at the following two recursive relations:
o (
- (k) ol ood pdondp (ke2) i i
viOg) = DyDyy EIE [y (yi)lyj]fyi] +F B Ixly.]
- (1)
4
i j i j : P = Yo S£3 =" = .
. + Diij LT [E [xlyj]lyi] , j.i=1,2% j#i; k=2,4,... or k=3,5,..
ot ]
it
e L e T S e e R i T L N

2

(LA

TN g
ra
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Note that if the recursive scheme (14) converges for even values of k, it also .

Ay converges (to the same limit) for odd values of k [this follows from expressions

o

?‘ (13a)-(13b)). Hence, we confine attention only to even values of k and obtain the

N

‘:& following result as a direct consequence of the foregoing analysis:

!;§ Proposition 2. A palr of policies (Yi’YZ) € Fl X FZ constitutes a stable Nash

;y: equilibrium solution if, and only if, for all (Y(O), (0)) € Fl p's FZ’

AT

R

4 . 2k

S Vo = tn vy (15)

Y koo

. where Y(Zk), E=1,2,..., is given recursively by (14). Furthermore, such a stable !
‘aiﬁ equilibrium solution is necessarily unique. a

;{; Let us now introduce linear operators Si: Fi - Fi, i=1,2, by E
- $;(v) =D Jng B (Ed (v (v, Plylyd o 4 1,501,2, (16) 7
’/-ﬁ 5
i’.f :J

_j.j Note that Si indeed maps Fi into Fi’ because the conditional expectation

- EJ[inY(yi)ly'] maps [, into Fj (j#1) when the probability measures satisfy

NS

?§ﬁ ondizions (1) and (2), and every element of Fi is square-integrable under beth Pi
N i

~ and P; (cf. Lemma 2).

) i

.4-4'\

;fﬁ: Furthermore, let us introduce the notation <<S>>i to denote the norm

ﬁiﬁ of a linear bounded operator $: Fi > Fi, which is defined by

AW

, ) ;

Al <«<§>>, = sup [<SY,5Y>i/<Y,Y>i]1/“ , (17a) -
s YET,

Fos i

foP, <",

30}

ot

fﬁ- and ri(S) to denote the spectral radius of §, which is defined by [see Appendix Al

S r.(8) = lim sup [<<£5k>>.]1/k (17b)

S i i

- koo

& k

-3 where 5~ denotes the k'th power of $. Finally, let us introduce the linear

Yy

{Ei operators

c~‘) ;
'. ‘ *
' *:

\%\
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D- = Dij ji (18a)
and
> U S,
Pi]i = E[E°[ ] , (18b)

both of which map Fi into itself (the former also maps Ui into itself). Then,
the following Proposition, whose proof depends on a contraction mapping
argument (see Appendix B), provides a set of necessary and sufficient conditions

for existence of the unique equilibrium solution alluded to in Prop. 2.

Theorem 1. (i) Under Conditions (1) and (2), the decision problem of Section 2 admits
a unique stable Nash equilibrium solution given by (15) if, and only if, there exists,

for at least one i=1,2, a pi, 0<oi<l, such that
£ 8y) = 1 (BB < : (19)
(ii) A set of sufficient conditions for (19) to hold true is the existence
of a pair of positive scalars (pi,pé), such that
oio§<l , ri(ﬁi) < oi , ri(iili) < p; . (20a)
Furthermore, a set of sufficient conditions for the latter two is

l

<<]_)i>>i = “51Hi < p; . <<13i|i > 2 2 (20b)
where “-“i denotes the operator norm on U,, as a counterpart of (17a).
Proof. See Appendix B. o

Part (ii) of Thm. 1 provides a partial separation (in terms of sufficient
conditions) of the deterministic and stochastic parts of the system. Now, if

the decision problem is a team problem with a common loss functional [which

1. 1 2 1 2 1.2
requires D22 =1, D12 = D2l’ Fl = Fl and F2 = FZ]’ and if team cost is strictly
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convex in the pair (u ) [which is true if and only if ||D12 12“1 =p < 1], it
follows that the first inequality holds with pl = oi <1l. 1If, furthermore, the

subjective probability measures assigned to the pair (yl,yz) by the two DM's are

equivalent, ﬁili becomes the product of two projection operators, thus leading

to satisfaction of the second inequality in (20b) with p; = og = 1, and thereby to
satisfaction of (20a). Hence, as a corollary to the second part of Prop. 3, we .
obtain the following result which is known in different contexts (7,8,9]. .

o)

Corollary 1. For the strictly convex quadratic team problem with equivalent subjective
probability measures assigned by the two DM's to (yl,yz), there exists a unique stablq:

equilibrium solution (the so-called team-optimal solution), irrespective of the

underlying common probability measure. o
For team problems with P1¥P2, a result along the lines of Corollary 1 does
not in general hold, be;ause the operator Pi}i is not necessarily the product of two
projection operators. Then, the general condition is (19) [or the stronger one, (20af
which places some restrictions on the parameters of the cost functional, as well as
2

. 1 , < s
the probability measures P~ and P°. To delineate the extent of these restrictions,

we now study the second inequality of (20b) somewhat further and obtain the following

sufficient condition.
Corollary 2. For a given o;, the second inequality of (20b) is satisfied if the i

expression

g (y yES [gd (v )yl =¢ 1y )f g (nyp3
Y5

v, Iy, (dnli =) (21a)

is uniformly bounded from above by (02)2 a.e. Pi . Furthermore, if the probability =
i
measures P1 and P2 are absolutely continuous with respect to the Lebesgue measure,

this condition can be expressed equivalently in terms of the probability densities

i
p (Yi,yj) as follows:

T"‘his result is slightly more general than the related ones that can be
found in [7,8,9], since here P% is allowed to be different from P%, though still a
restriction is imposed on these (indirectly) via the equivalence between P and

EA %

V1Yo




Proof.

(yi) .
i [p (n)p;
(Yi) v, Y57l

i

<< H-< [

For (21a) see Appendix C;

3 i,2
yi(n|yi)/py (M]dn < (0,)

3

(21b) follows readily from (2la).

(21b)
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4. General Sufficient Conditions for a Stackelberg :g

Equilibrium Solution =2

We now turn our attention to the asymmetric mode of decision making, -

obtain some general sufficient conditions for existence of a Stackelberg equilibrium 3
solution, and provide a complete characterization of the solution. Subsequently we é;

consider some special cases with some further structure imposed on the cost functionalg,

51

and the probability measures. B

%

Firstly we obtain an expression for DM2's unique reaction T2: Fl - Fz, as ‘2
J
defined by (10), using Prop. 1l:
= ° - p2 g2 2 2 T
Tl d = vp(rp) = D5 E [y ) Iy, + FRE (x[y,] | (22) -

L] A

Hence, the derivation of the leader's Stackelberg policy yier involves (in view of

1

(11)) the minimization of J1 over Fl after y; given by (22) is substituted in. This 3
substitution yields 4
OA
o
Ty &5 0y oL L p2g2
J(Y) = Jl(\ 9Y2) - 2 <Y ’Y>l + 2 { (FZE [xly2] .
2 -
-J
2 .2 1.2 .2 1 .22 1
+ D9 E [v (v Iy,1a05,05 B (v ) [y, + Dy, FoE [x[y, 1), Pyz(di) 53

1.1 . 2.2 1
<y, E[Fyxly 1> + [ 05 E V() Iy, ] + FE [x]y,], Fyx), :
XxY .

2 7

. Ph(ax,Y,,d8)

D)
1,1 2 .2 1.1 2.2 ”
- <ty ET[D],00,E Iy Iy, Ty, 1 + BT (D), FRE [x]y, 1]y, 1>, .
where we have deleted the subscript 1 in Yl in order to simplify the notation.
P ]
Now, since Fl is a linear space, and J is the sum of terms homogeneous of degree :;

zero, one and two (maximum), any minimizing solution Yy€T, will have to satisfy -

1

Lo




3
¢
i
IS
H
k.
.
.

o
¢ 15
8
{ . . - 9~
- AJ(y 3 h) = J(y+h) = J(v) = 8J(y; h) + 8°J(y 5 h) > 0 ¥heT,, (24)
e where 613(y ; h) is the Gateaux variation of j(y) of degree i'. Extensive
'l manipulations, details of which are given in Appendix D (subsection 1), lead to
<o ~ ~
the following expressions for §J and GZJ:
o
£ §I(v; h) = <h,y>. - [ (h(y,), (V) (¥;)) P (dy,)
? Tl ¥ 1/’ " 1771 yl 1
E\‘, | 1 (25)
J _ 1
3 (h(yl),B(yl))le (dy,)
o 1 1
& 2 1 1 1 2.2 2* 1 2
!
-a (26)
2 1 1 2=
. E [h(€>|y2][y11>lpyl(dy1> - <hD1,D Py gy
where Z: ?1+Fl and Sefl are defined by
12 2% 1% »
2 = +
(2 (rp) = (D1pDy)Fy1p * DyyPrafyy vy
B (27a)
2" 1 2 1 2,2, 2 |
- D5 D5,D5,8 (Y E (87 (y,)E  [¥(y) iy, 11y,
. - Flexly. ] 2* 1 21 . 2 |
3(y)) = FlElxiy,] - D5 Dy, o8 (v JE (8" (v )E  [x]y, 11y, ]
« (27b)
1 21,2 | 2 .11 2.2 1
- DI,FE [ETIx]y, )iy ] + D5 Fog™ (v DE (87 (v )E" [x]y, 1y, ].
Pl;l : ul+ul is a linear operator given by
P ov(y) = ENET[v(v ) (v, ]y, ] (28)
11171 (v dingd

‘Here 5 J is written simply as °J.
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,f ul is the space of yl-measurable random variables taking values in Ul’ and gl(E) are :ﬁ
L7
the R-N derivatives (2). Note that Plll is related to Plfl defined by (18b) by s
A " ﬁ
b Poypd = (BN Gy {j
'
) where the latter (which is a mapping from Fl into Fl) has been used in (26) and will &3
!; also be used in the sequel whenever needed. h
) -
. Now, since (24) is also equivalent to e
{ Y]
. -~ [ ]
- = & o
% §J(y,h) 0 ¥h Fl LS
b 2~ > ( 2 9 )
. § , > S 3
o J(y,h) > 0 ¥h Ty Eg
{: a Stackelberg solution Y€F1 will exist for the leader if, and only if, 5
e 3
" (i) (26) is nonnegative definite, i
' and (from (25)): %é
- l “
., (11) v(yy) - (EV)(y,) - 8(y,) =0 , a.e. P . (30)
" 1 1 1 Y1 -
. M

Since the first of these conditions does not depend on Yy, the optimal solution

;, is solely determined by (30), which can be rewritten as -
N 1 2 1.2 2 1% 1 ) 2 1 :
<. . = N AV | ki
- 1(y1) = D1pDo B (B Iv(y ) |y, My 1 + D3 D18  (v) EX (87 (v ) E [v (v Iy, ly,]

X * 21 2 1. 2 2 T
.~ 2 11 2. 2 1 - 2 -
N + D5 F,8 (7 DET (87 (v,)E [xly, 1y ] 7 DpyPpPy 8" WPE 8T () E vty D Iy, My 1
) . % 2 l 2 1 -.::
- 21 21 2,2 20 v ]+ Dl FIE [E“(xv, 1y ] -y
L + FiEl[x]yl] - D5qD5,F8 (y))E (8 (v,)E [h|V2]|>l] 12°2 (E"[x1y,liyy

- (31)
[

‘% where we have utilized the fact that the adjoint of Plll is a linear operator &:
! ) ' :j
M Pi'l: ul*ul, given by [see Appendix D, subsection 2]

\ -
) ‘
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1 2
P (dnxdyz)Py . (dylxdyz)

* Y.y
, _ 172 172 _ 1 2.2 1
Pligvlyp = é v(n)é " T = 8 UPET B NE vy |y, ]y,
1 5 yz(dy2) yl(dyl)
(32)
Furthermore, condition (i) can be rewritten as
A1 251 2 ok 12 2" 1%
A ST+ 5 DyyDopDy (BHK) = D1pDoyPyyy = DoyDipPyp 20 (33)
where I: Fl»Fl is the identity operator, and K: P1+Fl is defined by
_ 1 2,2 2
K¥)(v)) = g (PE [8°(DE [Y(y ) y,11]y,] : (34)

We now summarize these results in the following proposition:

Proposition 3. Under Conditions (1) and (2), the decision problem with multiple

probability measures admits a Stackelberg equilibrium solution if, and only if,

A is nonnegative definite and (31) admits a solution in Fl. =)

Equation (31) will, in general, not admit a closed-form solution, even
if all random variables are jointly Gaussian distributed (see §5.3); therefore,
we will have to resort to numerical computations which will involve a recursion of
some type. Hence, in analyzing the conditions of existence of a solution to (31)
we may also require that such a numerical scheme be globally convergent (or stable).
One appealing scheme whereby a unique solution to (31) [or, equivalently, (30)] can

be obtained is the recursion

) (y (2 (D

» Yy + 8 L kL2, (35)

0) .
where y( ) is chosen as an arbitrary element of I',. If the limit lim y(k) 2.8

1 =y

- ' k=0
@xists in  E for all such initial choices, then YS

will necessarily constitute a

solution to (31). A sufficient condition for this readily follows from

Lemma B.1, which we give below as Prop. 4.
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?E Proposition 4. In addition to the conditions of Prop. 3, assume that there exists -
7 v a scalar p, 0<p<l, such that
Y oa
- )
A r(2) < o (36) _
-:ﬂ:: -
Al where r(2) is the spectral radius of Z. Then, the decision problem admits a
- unique Stackelberg equilibrium solution (YS,TZ[YS]),where YSEFl is the limit of .
)
:ﬂﬁ the iterative scheme (35), and T, is the affine operator (22). o -
2 Fal N
e -
i We now further elaborate on (36), so as to bring it to a form which
?ﬁ: separates out the contributions from the deterministic and probabilistic e
Y. ‘\
e
7$: components of the problem. [Here, we are seeking sufficient conditions which
> K
i would constitute the counterpart of (20) in this context]. Towards :
ﬂ?: this end, let us first note that using (34) in (25a): <
o . 1 2= 2" 1%k 2% 1 2
r(2) = x(D05 P11 + DpiP1oP )1 7 Pa1PpaPyi M (37)
:}: and utilizing the inequality relationship between the spectral radius and norm
.,
:}t of an operator (see Appendix A, Lemma A.l) this can be bounded from above by
) 1.2 2% 1% x 2* 1 2 K
e P T P UV IR R ST LIS Lise] g
j:j where << - >>1 is the operator norm as defined in (17a). Using the standard .
j7 (triangle inequality) property of norms, this can further be bounded from above
250 -
e by <
i 1 2 2" 1 2" 1 2 3
R R I LT LTS M TP S L LS s T 3
.-77,'-‘—i * A
, 2 1 .2 . iy
S Now since both DHD,,,D21 and K map a Hilbert space (Fl) into itself, using the 3
. norm inequality for products of linear operators, we further have .
‘\J. L
. R 21 2 : ‘
L e L B L E L B R RS LSt L T
S
H'\.;‘ * % o
g 1 2 2 1= 212 * 1/2
W = + D P + N K -
T PPy 1 * PoPrafy ) F (010,50, [F(E K] .
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where the equality follows because (i) the spectral radius and norm of a

self-adjoint linear operator are equal [13,p.514], (ii) norm of a "non-self-adjoint"

linear operator K is equal to the square root of the spectral radius of the
*
self-adjoint operator K K (see Appendix A, Lemma A.l). Finally, using the result

of Lemma A.2 (Appendix A), the latter is bounded from above by

*
1/2 2 1 .2 * . .1/2
+ r(DZlDZZDZl) [r(K K)] . (38)

* *
1.2 27 1% 172
1202102101017 Ir(®

r(Z) < 2[(D lllplll]

Now, let us assume the following:

Concition (3). There exist four positive scalars PsPysPq:P,, satisfying

2 0102 + 9304 <1 (39)
such that
1.2 2% 1% 2 2* 1 2
T(D1Dy1071079)2 ()" s T (D5;D;,D5,) <0 (402)
—% 2 * 2
r(Plllplll)f-(pz) s r(K K):_(oa) . (40b)
|}

Then, we have

Theorem 2. Under Jomiitiows (1)-(2) of §2 and Ccnditicn (3) given above, the

decision problem admits a unique Stackelberg equilibrium solution (YS,T7[YS]),

S . .
where ¥y 611 is the limit of the iterative scheme (35), and T, is given by (22).

- .
PP
Zrcor,

The result follows from Prop. 4 and the discussion and derivation
that leads to Condition (3), provided we show that the given three conditions
subsume (33), i.e. nonnegativity of operator A. We now verifv that Jondition (3)

in fact implies that A is a strongly positive operator. First note that A is
*
self-adjoint, because K commutes with Dng;ZDgl. Hence, using Lemma A.3

(Appendix A), we can write down the inequality

S
. ‘\ * : *
) L1201 0k 125 pl st
TA-I) - 5 v(Dy,Dy,D7 (K+K')) + r(D;,D5 P |, + Dry D571 1)
Ry \ s o ."‘-"l‘_ 4‘.,_‘: -. . '..‘*'.'A".'.'; ,'_",'. Ve ,'.':- B e T e T R B SO A SoTleT
A B e S T e A e e e T e e g
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Then, using the line of arguments that led to (38) from (37), and the spectral radiusjzx

inequality for the product of two self-adjoint operators, we obtain the bound

—-—
* * _*% =
1 2.1 .2 o ® 1.2 .2 1 .,,1/2, =% — 1/2 -
A-I) < = r(D,,D,,D + -
TAD) = g r(0g10gp0py) UKD 4 rl(D1,051051 Dy ) 1T T Ir Ry 4Py 4 )]
< 1 K+K* .
<5 ey r( ) + 010, v
=3
But note that T
* ok
r(k+K') = sup [<v, B v> [<v,v> 1 = 2 sup (v K> [<y,yo 1, o
e 1 yefl ;§
and since, from the Cauchy-Schwarz inequality of inner products, I
.\‘f
2 . -
[<v ®y> 17 < v,y | [<ByoKey |,
=
* 1/2
we have r(K+K ) < 2 sup [<Ky,Ky> l<Y,Y> 1
—_ l 1 e
YEeT -
1 o
b
%*
= 2 sup [<v,K K>1[<Y,Y§gl/2 = 2[1:(1(*1()]1/2 j_ZDA ?Q
YEFl -
Thus, A- 5
us r(A-1) < pyo, + 00, < 1, .
implying that the spectrum of the self-adjoint operator A-I is uniformly in -
the unit sphere. Hence, A is strongly positive. S -~
For the special class of strictly convex team problems (cf. §3) with :;
s
multiple probability measures, several simplifications can be made. In this case
-
eq. (31) simplifies to N
11t o
v = 2 1 2,2 N
= {
0D = PPy EE oD y,) + gl opEtisty vy, =
2 11 -
- E7 [y 3 e
P 113 ey 0d + FiE (e y,) (41) =
1

P

111 2,2 2
* DpF8 (v DE (87 (y,) (E [x|y,] - E [xiy,1} fyl] + Diop

o

1.2 . .
EN[E [xly,Tiv,] , -3

and in Jondizion (3) i i
d in ritzion o) inequalities (40a) are replaced by the single inequalitv

2 s
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* * *
1 1" 1 1t 2 o1 1t -
[r(D1aP19P 9P ) ] =D gD >0 < 9170y

where ol can be taken to be less than one. Hence, (39) reads
(292+04) <1/ op . (42)

We now summarize these results as a corollary to Thm. 2:
Corollary 3. Under Conditions (:'-(2) of §2, and (42) given above, the strictly
convex quadratic team problem, with multiple probability measures and asymmetric

mode of decision making, admits a unique Stackelberg equilibrium solution

S

s s . .. .
(v ’TZ[Y 1), where vy GFl is the limit of the iterative scheme (35) with

*
=, - nl pl * 1 2

<

and T, is given by (22). =

Remark 3. When the original problem is a Stackelberg game, but the probability
measures are identical, a study of the original condition (36) reveals the inequality

* % *
. 1.2 27 1 2" 1 2
z + - <

r(Z) < £(D),Dy; + Dy Dy, = Dy;DynD51) < 0 < 1.

This is the existence condition associated with the standard stochastic Stackelberg
game, which corroborates the earlier result obtained in [25]. S

We now conclude this section by presenting the counterpart of Corollary 2
in the present context, which provides a set of (simpler) sufficient conditioms for
(40b) to be satisfied:
Corollary 4. For a given pair (02,04), the first and second inequalities of (40b)

are satisfied if, respectively,

1 r 2 2 .
g (yl) ] 8 (“.)Pv , (dn|z = yl) (43a)
¥ Yo19)
2
1 2 2.2 | : 1 2 | .
and g (v Yy g~ (! POy (dn} g = yl) j g (b)P_ (dbly, = ) (43b)
Uy, Y2171 Y, Y1172 -

5
are uniformly bounded from above by (32)2 and (04)_-
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Furthermore, if probability densities exist (with respect to the Lebesgue

measure), these conditions can be expressed in terms of the corresponding probabilit

density functions p1 v (+) as follows:

172

2 1

Py, () { Py, ™ ot < o2 (442)

T, . Y2 T Py |y (niypddn 2 (e,

2471

Pyl(yl) pyz(n)

p2 (v pl {(n),2 p2 (b)

Yy vy | 1 X )

T / > Py ]y(nlyl)dnf T Py ly (biﬂ)dbi(o[,) .
(44b)

rcof. TFor (43a)-(43b) see Appendix C; (44a)-(44b), however, follow readily from

v

(43a)-(43b). o
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5. Jointly Gaussian Distributions

In decision and control theory, one appealing class of probability
distributions 1is the Gaussian distribution, because it leads to tractable problems
admitting, in most cases, closed-form solutions. Indeed when the probability
measures of the two DM's are identical and Gaussian, equilibrium solutions have
been shown to be affine functions of the observations for (i) quadratic stochastic
team problems defined on Euclidean spaces [7], (ii) quadratic stochastic Nash games
on Euclidean spaces [8], (iii) quadratic continuous-time stochastic team problems
[9], (iv) quadratic stochastic Stackelberg games on Euclidean spaces [25], and (v)
quadratic continuous-time stochastic Stackelberg games {26]. In this section, we
investigate possible extensions of this appealing structural feature to the case
when discrepancies exist between the subjective Gaussian distributions, as
reflected in the covariances of the random vectors (yl,yz). We could also have
included discrepancies in the perceptions of the mean values, but such a more
general treatment does not contribute substantially to the qualitative nature of
the results obtained in the sequel, and besides it makes the expressions notationally
cumbersome. Interested reader could find relevant expressions for the nonzero mean
case in [27].

We first introduce notation and terminology, and delineate Conditions (1)
and (2) of §2 (8§5.1). Then, we study the case of symmetric mode of decision making
in §5.2,and show that the unique equilibrium solution of Thm. 1 is linear. Finally
in §5.3 we treat the case of asymmetric mode of decision making, and show that (in
contradistinction with the result of §5.2) the unique Stackelberg solution of Thm. 2
is generically nonlinear.

5.1. detation and Terminology

2
Let (x,yl,y7) be zero-mean Gaussian random vectors under both Pl and P,




covariance (yl,yz) = I = > (0 , under Pi . (45a)
y Zi i ’
YY1 Y2
Zi i
i X Xy .
covariance (x,yl,yz) = cov(x,y) = £~ = > 0 under P. (45b)
g1 5
yX y

These probability distributions clearly satisfy the absolute continuity condition

(Condition (1)) of Thms. 1 and 2. Furthermore, since

g (2) = (det £ /det I3 Yexp {- lﬁ'w £} (46a)
Yy Yi 27 1
~1 i1
w.azd -z , j#1 , (46b)
YTy Vi

the uniform bouadedness condition (Condition (2)) of Thms. 1 and 2 is satisfied

whenever

W, >0 , i=1,2. ')
l—

After making these observations, let us in:roduce the additiomnal notation

. . . -1
v, ol - Tl -l . A (48a)
j

1= 11 ij j i yi
B, M. +W, (48b)

i="33" "3
Mil Miz s . -1

A 1 N1

1 I g1 i (48c)
M M,/ z T

2t Y291 Y,

. : . . L 1/2
o & [det 3t} .det 1 /det Il .det B, .det I]] / (48d)

= vy Y5 s j y

in terms of which we evaluate (2la) [using standard properties of Gaussian

distributions] to be

i O S 49
q exp (-3 yiDiyi} . (49)

1,y ghied
g (vy) E (g (yj)lyi]




rers
e

a.®

g_.:,j’)

R ]
B
LJ

[N

LA |

.

25

We are now in a position to specialize the results of Thms. 1 and 2 to Gaussian
distributions and obtain some explicit results.
5.2. Symmetric Mode of Decision Making
In order to apply Thm. 1 to the Gaussian decision problem formulated above,

we first explore the satisfaction of various conditions given there. We have already
shown above that Condition (1) is always satisfied and Condition (2) is satisfied
whenever Wi > 0. For the remaining condition we study inequalities (20b). The second
of these is satisfied, for a given o;, if (using (2la)) expression (49) is uniformly
bounded in Yi» and this bound is no greater than pg. For uniform boundedness of (49)
it is necessary and sufficient that

N, >0 s (50a)
under which the latter condition becomes

t < oh?

Hence going back to (20a), the condition

"D}.Dq."% < 1/qt , for at least ome i=1,2, (50b)
ijiji i

becomes sufficient for (19). We are now in a position to state and prove the

following theorem:

Theorem 3. Let (47) hold for i=1,2, and (50a)-(50b) hold for at least one i. Then,

the quadratic Gaussian decision problem formulated in this section admits a unique

P

o
stable Nash equilibrium solution (yi,yg), where uz = Yi(yi) are linear in Yi» and are

givea by

(o] .
Yi(yi) =Ly, i=1,2. (51)

m

Here, L,: R L, ' are bounded linear operators, constituting the unique
1

solution to the linear operator equations

-1, ~1
NG
L.y, - D;.D,.L.L z ? vy
-1, ~1 . -1
i 3] ] i i S T S m,
- D, Fii I L D PR R S € =1,2
133 xyj yj yv.v, Ui iixy, 7y, 71 0, ¥y, R, i
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§
Proof. The existence and uniqueness of the solution follows from Thm. 1, Corollary 2,

and the discussion that precedes the statement of the theorem. The linearity of this

unique solution, on the other hand, follows by noting that if the pair (yio),yéo)) is

taken to be linear in (y,,y,) in (14), all the terms of the sequence are linear, and
1’72

[

hence the limit (which exists as already proven) is linear. Hence, choosing v; as in

m,
(51), where Li: R~ Ui are bounded linear operators, substituting this into (14)

and requiring it to hold for all inIfH'(since all probability measures are Gaussian)%
leads to the unique relations (52). ) G
Remark 4. Thm. 3 above extends the result of Thm. 2 of [8] on quadratic Gaussian
games to the case when a common probability space does not exist and the decision
spaces are not necessarily finite dimensional, and shows that the appealing linear
structure prevails when thereexists a discrepancy in the perceptions of the two DM's
of the underlying probability qg?sures. The existence and uniqueness conditions here
are, however, more restrictive than those of [8], and also involve the probabilistic

structure (see (50b)). Expression (21a) in the most general case (and (49) for the

special Gaussian case) is not uniformly (in yl) bounded by 1, unless gi(yi)=g3(yj)=l

a.e. P; and p? (which corresponds to the case of equivalent probability measures),
i 3 :
since R-N derivatives (if different from 1) will be both smaller and larger than unity

"

on sets of nonzero measure. This then implies, in view of (47), and from (49), that
q1 > 1, i=1,2, with the inequality being strict if P- is not equivalent to P; for at

i i :
least one i=1,2, j#i. 1In such a case, even team problems, a stable equilibrium soluti;

{1 9
mav not exist, particularly if 1/qi < HD;jD;iHi < 1 for at least one i=1,2; j#i.

This indicates, in general, the presence of a strong coupling between probabilistic and
deterministic elements of the problem in terms of existence conditions. However, if
the discrepancy between perceptions of the DM's on the probability measures (measured

in terms of R-¥ derivatives) is sufficiently small, one would expect q, to be sufficien

close to unity, which ensures satisfaction of condition (50¢) for a fairly general
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jivij j

class of quadratic strictly convex Gaussian team problems (since, ﬂngDgiﬂi = Ipd pt b, = ¢
5 < 1, for such team problems). For further discussion on this point we refer the :
reader to [10]. a

In the statement of Thm. 1, the condition (47) places some severe restrictions
on the second moments of the underlying distributions (in case a discrepancy exists),
which may however be relaxed if we are willing to consider equilibrium policies in a
more restricted space. More specifically, satisfaction of (47) ensures that regardless
of what initial set of policies the DM's start the infinite recursion (15) with, every
element of this series is well-defined, and under (50a)-(50b) it will converge to a
unique limit which is linear; in other words, even if the DM's start with nonlinear
policies, the end result will be a linear equilibrium solution. The condition (47) is
restrictive, because we require (without imposing any constraints on the policy spaces)
the series generated by (15) to be well-defined even with nonlinear starting conditions.
However, if we restrict the team agents to linear policies from the outset, under
Gaussian distributions (and following the argument used in the proof of Thm. 1) elements
of the series (15) will be well-defined (without requiring (47)) and will converge to
the equilibrium solution provided that (50a)-(50b) hold for at least one i=1,2. This
line of reasoning then leads to the following result which we give without a proof.
Proposition 5. Let f? be the class of all linear policies in the form (51), with

m

L,: R‘l
i

- Ui a bounded linear operator, i=1,2. On Fi X F;, the statement of Thm. 1
is valid even if (47) does not hold true. a

We now interpret these results in the context of two examples one of which
is a scalar team problem and the other one is a continuous-time team problem, both
with multiple subjective Gaussian probabilities.
Consider a family of scalar Gaussian team problems, with
2 1 1 2

l- = -2_.:IJ. = = =m =m =
Dy, = Dj; =1, Dy, = D5 =4, bl o« 1, F| = £, F5 = f,, p=m =m=1, and

"
7.1 = \ . T o=y s ” ur*%) 3
<., I | ; Sy ’ N X2, ure>2 ., (53)
z \é nb/ P \ 2 ba)
Y \
e T AT T Tt e et e T M T e T T T e e e e .
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To investigate the applicability of Thm. 1 to this class of problems, let us first Lg
observe that condition (47) is satisfied if, and only if, both -
o=
O<u<l , 0<n<l . (54) -
For condition (50a), we evaluate Ni and require it to be nonnegative for either i=1, ..Q
or i=2:
=
22 2
Np = (uab-e?) (1-w) [ua?~e?= (1-w)ab 1/ {alu’a’= (1-u) (uab-c 1} 2 0 (55a)
= 2 2 2,2 2 s
Ny = (nab—ez)(l-n)[nb ~e“=(1-n)abl/{b[n“b"-(1-n) (nab-e")]} >0 , (55b) *d
Finally, condition (50b) dictates either L
2 =3
ua2|d|2< n[uzaz-(l-u)(uab-c )] (56a) - 1
0_]7 =%
2 2 mh
nb2|d|" < uln?b?=(1-n) (nab-e”) ] (56b)
provided that the terms on the right-hand-side are positive (if not, then the éé
= 4
inequalities will accordingly change direction).
R
The set of values for a,b,2,e,u,n that satisfy (54)-(56) is clearly not i
empty. To gain some further insight into these conditions, let us consider
the class of team decision problems in which the discrepancies between the DMs' o
perceptions of the variances of different Gaussian random variables is relatively :é
small, that is there exist shfficiently small el>0 and 52>O such that u=l—el,

n=1- and furthermore e~z, and (c! is considerably smaller than both & and

€45
D. Note that, when el=52=0, conditions (54)-(56) are all satisfied (note that
|d|<l because of strict convexity of the objective functional) regardless of
the relative magnitudes of ¢ and ¢. Hence, when the discrepancy is only in the
perceptions of the correlation between ¥y and Yoo the scalar quadratic Gaussian

team problem always admits a stable equilibrium solution. Now, for nonzero,

but positive,and sufficiently small €1» the dominating term in (55a) is

L R T T
SN S R e LA
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Ny T el(uab-cz)(uaz—cz)/uza3

which is positive, in view of (53) and the initial hypothesis that !a/c|>>1.

Likewise, D, is positive whenever O<e, <<l and |b/e|>>1. Furthermore, given

2

a E, 0<E<l, we can always find ¢

2
1 and €50 both in (0,1), so that both (56a)

and (56b) are satisfied whenever ]dléz. Hence, the conclusion is that when the
deviations of the perceptions of the DM's from the common Gaussian probability
measures are incremental (and satisfying (54)), the linear equilibrium solution

of the Gaussian scalar team problem retains its stability property (but, of course,

at a different (possibly close, in norm) equilibrium point). 0

Frample 2. As a second illustration of Thm. 1, for infinite-dimensional decision spaces,
we consider here a class of stochastic Gaussian team problems defined in continuous time.
More specifically, let U1=U2=£2(O,T), the Hilbert space of all scalar-valued Lebesgue-

integrable functions on the bounded interval [0,T]}, endowed with the standard inner

product fTu(t)V(t)dt, for u,v€£2. Furthermore, let Yl and Y2 = R, and the Gaussian
0 . . 2 1
statistics have zero mean, and variances be as given in (53). Let Dll = D22 =1,
*
2
the identity operator on £2, and Diz = D21 be the Fredholm operator

T
D} u = [ R(t,s)u(s)ds (57)
12 5

where K(t,s) is a continuous kernel on O<t,s<T, and finally let F; = fi(t),

i=1,2, which are continuous functions on [9,T].

Now, conditions (47a) and (50a) depend only on the probabilistic structure,
and are therefore again given by (54) and (55), respectively. For (50b), however, wve

. a2
have to obtain the counterpart of (56), by simply replacing :al with the norm of the

1 1* 1* 1 1" T
14 { = f S
coperators DlZDIZ and D12D12’ respectively. Since D12 u 6 K(s.t)u(s)ds,
1 1"
the self-adjoint operator DpD12 is given bv



* TT T
Dizniz u = cf)(f) K(t,1)K(s,T)u(s)ds dt = é K(t,s)u(s)ds,
K(e,s) & d (58a)
where 0 K(t,T)K(s,T) drt.
TT
Let A= ([]lk(e,s)| 2deast/ 2. (58b)
00

T T T .
Then, ||1)12D17 uJIl = f I fz{(t s)u(s)ds| 24¢ < [ U]z (t,s)[zds][flu(s)lzdsldt =
0 O 0

where the second step follows from the Cauchy-Schwarz inequality. Hence,

1 l
”D12D12M.< A ’

*

and because of symmetry DiZDiZ is also bounded in norm by the same quantity.

This then leads to the following counterpart of (56): A sufficient condition

for satisfaction of (50b) is either

uazA < n[uzaz—(l—u)(uab—cz)] (59a)

b2 < u n2b%-(1-n) (nab-22) ] (59b)

provided that the terms on the right-hand-side are positive, where )\ is defined

by (58a)~-(58b).
Hence, under (54) and either (55a) and (59a) or (55b) and (59b),
the continuous-time static decision problem for.ulated above admits a unique

stable equilibrium solution, and this solution is given by (from Thm. 3):

o .
ey) =k (Dy, , i=1,2, (60)

where ki(t) are continuous functions on [0,T], satisfving
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k(0 - ) é K(t,s)k,(s)ds - (cxy elab) | K(t,s)f,(s)ds - (oxy /)£ (6)=0  (61a)

] Ce 1

T

E% k,(t) - (%%) é K(s,t)k,(s)ds - (oiylc/ab) z K(s,t)f,(s)ds - (ciyzlb)fz(t)=0. (61b)
g! Note that ki(t) above stands for operator Li in (52), and we have already shown

rki that a unique solution to both (61la) and (61b) exist in Ez [O,T]; under (54) and
- either (55a) and (598) or (55b) and (59b), and this solution is also continuous.
Fz Finally, if our interest lies only in the existence of a unique linear

equilibrium solution (not necessarily stable), the required condition is unique

N
iﬂ solvability of the integral equations (hla)-(61lb), for which a sufficient condition
I,'\» is [6]

vt (ea/ab) A < 1

where }» is detined by (58b). o
5.3. Asymmetric Mode of Decision Making

To obtain the counterpart of the results of §5.2 under the asymmetric mode
of decision making, we first investigate the possibility for the unique solution of
Thm. 2 to be linear. Towards this end we first observe that the decision problem will
admit a unique linear solution if, and only if, equation (31) is satisfied by the

decision rule

(62)

v(y) = Ay, .
v ™y N
I for some linear bounded operator A: R *Ul. Hence, using (31), A should be e
r. the solution of (bv pulling A out of the conditional expectations)
K .
l 2 1 1 2.2, 1
. Ay, = 12021AE (E%[y Iy,,]lyl + D, Dy, (v IE[87(¥,))E [yllyz]!yll

’E °12 2

- Dzl 22 f)l‘\g (v ) [g_('}’o)E_[yl?l‘_lex}'l] o3m)
h’ ¥ 1 2 1o 0 1
’ +rletinly,) + 0y Fast (D 18R (v E (el y, Dy ]
J m -
s 2 pl 2[-'? v, ] - Dt F“El[E [xiv,]lv,] . ¥v.ER L
‘ - D,lDZZFZg (v, yE [g (y,)E"[xjy, 11y L Fa v, 11y vy i

DT ‘\.‘~1‘C>~_’\“\\' A
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.
\:: Since the random variables are jointly Gaussian under both measures, F%{
"&\'_ ;
. 1 1 ( =
= k#2 : i,k,2=1,2 63b) -
v BT Ly vg) = Sipv - MR E R =
L "
W . .
1 1 . -
; = 2=1,2 , 63c -
W . . '
for some matrices S;z and SBQ' In view of this, (63a) can be rewritten as -
::- % % * ‘:t.‘
e 0 ]. 2 2
- ool 2,2 1 1.1 1.2.2 .1 2 1,1 _p2 plptoas
X ayy = (D1,D31887587) *+ F1Son ¥ P12Fa8 05521071 + [P1P1p8810 7 Pa1a2 21712 (64
| 2% 1.1 2* 1 2.2, 1 2, 2 -
: + D318y = Dy1DpaFaSppl 8 (YD E (87 (p)y, [y, ] 3
- -4
l: This then leads to the following Proposition: .
o Proposition 6. Let (47) and Condition (3) be satisfied, and either Pi # Pi or N
1 1 -3
fj P; # P; . Then, the quadratic Gaussian decision problem with asymmetric mode of )
- 2 2
> decision making admits a linear (Stackelberg) equilibrium solution if, and only if, j
m P ]
. ol
:} (i) there exists a bounded linear operator A: R 1-+ U1 satisfying
-.': Y
b 1.2 ,.2.1 1.1 1. 2.2 .1 ‘::3
W A7 P1PpiA81501 * FiS01 * PSS o (65a)
) q
"L and (ii) this solution also satisfies 'Y
R % *

%
1.1 2° 1 2.2
F,S02 = D51Dp,F5S 0. (65b)

. * *
N 2.1 .1 2 .1 2 2 2
2 2172272702 ©

-, D,.D7,AS - D,,D,,D,.AS + D

v 217127712 217227217712 1
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Since the "if" part is obvious in view of Thm. 2, we verify only

o
r

the "only if" part of the proposition. [In what follows we adopt the notation

’

vl
A

¥
s

S > 0 to imply that the nonnegative definite matrix S has at least one

positive eigenvalue.] The proof proceeds by showing for three exclusive

L.' o

.
BN ‘r‘*r‘ g
PR S '] ~

)
(and exhaustive) cases that f(yl) = gl(yl)E"[gz(yz)y71y1] is a nonlinear function of v

< ’:
L)
‘ "['-

2
(a) P~ =Pi , and Pl #PZ

i
v Y2 Y2 1 %1 “
.,
5 2 . 1 .1 . 39
oy Here, z (y2)=L, and g (yl)=cl exp i= 3 ylwlyl}, where wl > 0, and
s . 1 2 v
Cl > 0 is a constant. Hence, f(y.,) = g (v,) S..v. which is nonlinear since W. > 0. «i
1 1 21°1 1 - :
‘.1
S U s S G U ks s SR
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ol _p?
(b) P # =P
Yy Yo y1 Y1

Here, g (y )=1, and g (yz) c, exp {- y2 2y2} where W, >0, and ¢, > 0

is a constant. In this case, f can be evaluated to be

- 2
f(yl) = c(V+W2) 1 Vleyl exp {- leyl}

b2, 2 2.
where V=E {(y2 SZlyl)(yz 821y1) }
2 l 2
B = 52£V521 - 21V (V+W ) 21 > 0,

and ¢ is a constant. Since W2 > 0, B has at least one positive eigenvalue,

and hence f(yl) is again nonlinear in Yy
(c) P2 #Pl and Pl #PZ .
Y2 Y2 Yl Yl

In this case, following the same lines as above, we find

- -1 2 -
f(yl) = c(V+W2) VSZlyl exp {~- % yl(B+wl)yl}

which is nonlinear since both B > 0, wl~i 0.

Hence, in view of the preceding analysis, a necessary condition
for existence of a solution to (64) 1is that the last term should vanish

(i.e. (65b)) for an A that solves (65a). C

Remark 5. A sufficient condition for (65a) to admit a unique solution in the Banach
m
space of linear bounded operators mapping R.l'into U, is

1
L * J{

2 2% L2 11
r(Dl2D21D21D17) Tr 281,55157:5 12} <1

which is clearlyv satisfied under Conaition (3). e
The conditions of Prop. 6 are clearly non-void; because, given the unique
1 2 1 2 P .
solution of (65a), it mav be possible to find F,, F2’ S02 and 802 so that (65b) is

satisfied. However, it should also be clear that satisfaction of (65b) places some

severe restrictions on the parameters of the problem, which in general will not be met.

. e . . 1 2 2 .
Hence, it is fair to sayv that, if either PV #PV or P #PV ,» generically the problem
‘1 1 2 -2
does not admit a linear equilibrium solution, even if it is a team problem; that is:

1
¥

i e L i
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Corollary 5. If either Pi #Pz or Pl #PZ (or both), the quadratic Gaussian decision :)

y Yo ¥
1 71 2 2
X problem does not admit (generically) a linear Stackelberg equilibrium solution. The
3 unique solution, which exists under (47) and Condition (3), is nonlinear. o =
; The conditions of the preceding Corollary involve only the marginal 5%
TH
; distributions of Y1 and Yys in the compliment of these conditions we can derive the
=)
byl
5 following linear solution: o
. o012
Y Proposition 7. For the quadratic Gaussian decision problem, let both Py =Py and e
A 1 1 T
b Pl =P2 (but not necessarily Pl <p? , and even Pl =P2 ) Then. if ’3
Y1 Yo V¥ X YYy% Y1Y9 Y1¥9)- s )
' x % * T
" 1.2 2 1 ..1/2 2" 1.2 .1/2 i
: 1 (66)
20r(DypDy Dpy D) 17 + [x(DyyD55D5p) ] ‘
. the problem admits a unique Stackelberg equilibrium solution for DM1 (the ;;
- leader) which is linear in Yy o
: S(v.) = A (67a) J
2 Y1V "1
K c‘_si
™ . e
where A: R +Ih_is the unique bounded linear operator solving
& & * h-.\
, _,1 2 2 1 2" 1 1.2 _ 2,12 2 2 1.1 + pl p2c2 o3
, A¥y = (D1pDy1A8758yy + DyyD1,A87,8y; ~ DpyDyyDpqA8T,S,) + FySy, + Dy,F3S5,857
¥ * *
2711 2 2°1 2.2 2 " (67b) o
+ D.,F - ES-
‘ 21%2%02%21 7 D31P52F 55025510 5 W,ER T,
»
] and . are defined b I is defi i 1 g
3 kg are define ¥ (31b)-(31c), and SOi is defined by E [x[yi] = SOiyi . d
=
A - - 1.2 1 .2 1 2 e, - o
- rrooj. When P =P and P_ =P_ , g (y,)=g (¥,)=1 and hence Conditions (1) and (2) of “.
. Thm. 2 are always satisfied, and in Condition (3), 02=04=l. Then, (66) is the counter-(j
; part of (39), and hence existence and uniqueness follow from Thm. 2. Linearity, on the
‘: other hand, follows by noting that if we start iteration (35) with YSO)=O, since i:
1% gl(yl)=g2(y2)=1 every term will be linear in Y1 (see also (64)), and hence the limit .
iy o
! (which exists by Thm. 2) will be linear. Then, substituting yl(yl)=Ayl in (31), we -
. )
: obtain (67b), by simply letting gl(yl)=g“(yq)=1 in (64). o o
; ’ R
2 .
S
~
.
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{3 When there is a discrepancy between the DM's perceptions of the variances
S

of either yl or Yo» Prop. 7 will not hold, and the problem will admit (generically) a

E

nonlinear equilibrium solution, as proven earlier in Prop. 6 and Corollary 5. In this

case, an explicit closed-form solution cannot be obtained; however, an approximate
- solution can be derived by using the iteration (35) which, for the Gaussian problem,
__’ becomes
- (k+1) 1 2 1.2, (k) 2" 1% 1
. Y (y)) = DDy ET(E [y (v Iy, ][y, ] + D5yD] 8" (vy)
B 2.2, 1 (k) 2" 1 2 1
. E" (g (y)E [v (yl)lyzllyll = D51D5,05,8 (yy)
3 2, 2 2. (k) 1.1 1 20
. BT L8 B I lyp vy b+ (FySgp + DpoF)Sgy Sy )y
3; 2* 1.1 2* 1 .2.2 1 2. 2 .

* (D3;F)Sh; = D1D2aF255,08 (YDE (8T (rp)y,ly 1 - 7

i~ R . . 0 _ . .

If we start this iteration with vy (yl)~0, or any linear function of Yyo at
i. every iteration we obtain linear combinations of terms of the type A(k)yl and

k s

B( )yl exp - % ylV(k)yl}, where A(k) and B(k) are linear operators, and

::: v (k)

>0 is an m, Xm, matrix. Since this is a successive approximation technique
under ComgTiziow (Z), even stopping the iteration after a finite number of terms
will provide a solution sufficiently close to the unique optimum. Hence, generically,

a suboptimal policy for DM1, which is sufficiently close to the unique solution of

»y -
) B

(31), will be of the form

é%
r (N) (%) 1 ¢ 3
o~ v . (y,) = A" v, + T By exp {- = yV )v } 4
11 1 o 1 271 1 @
l;‘ - Al
g
- ‘
where N is a sufficiently large integer (related to the number of iterations o
5 . (N ) ¢ ?
o taken in (68)), and A ), B( ), V( ) are generated via the iteration (A8). YNote
.. that as N-= this solution will uniformlv converge to the unique optimum. 4
& Yet another suboptimal solution can be obtained by restricting DMl's -
B policies, at the outset, to linear functions of ¥ i.e. to the form (h2) :
where A 1is a variable linear operator. DM2's response to anv such policv will

e e et eta o a mtara et ettt T T e T e L . T T |
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T A
also be linear (in yz), thus making T, in (10) a linear operator. Then, the
problem faced by DMl is minimization of (11), with y(y,)=Ay,, over all linear -
=
‘3
bounded operators A. The solution of this minimization problem will provide
DMl with a linear policy that is (in general) inferior to the limiting solution of .
(68), unless, of course, gl(yl)=g2(y2)=1 in which case the two solutions will

be the same (satisfying (67b)). We do not pursue here the details of the
derivation of the best linear solution for the general case (as outlined o

above) .

Furthermore, it is possible to work out the various conditions for the speciﬁi

cases of the scalar and continuous-time team problems (formulated as in Examples 1 and;z

2) and write down the equilibrium solution explicitly whenever it is linear. Such an

PR
-ty

analysis would routinely follow the lines of the discussion of Examples 1 and 2, and

193

hence will not be included here mainly because of space limitationms.
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6. Discussion of Possible Extensions, and Concluding Remarks

In the preceding sections, we have developed an equilibrium theory for two-
person quadratic decision problems with static information patterns, wherein the
decision makers (DM's) do not necessarily have the same perception of the underlying
probability space; that is, our formulation allows for discrepancies in the way
different DM's perceive the probability space. As indicated earlier, when such
discrepancies exist, even team problems have to be analyzed in the framework of
nonzero-sum stochastic games, and in such a framework the Nash solution concept is the
most suitable equilibrium concept if the DM's occupy symmetric (non-hierarchical)
positions in the decision process, and the Stackelberg solution concept becomes more
meaningful if there is a hierarcy in decision making.

Section 3 of the paper has provided a set of sufficient conditions for
existence and uniqueness of Nash equilibrium in the case of symmetric mode of decision
making, with the additional feature that it be stable. This is an appealing feature
of the solution because, in order to arrive at equilibrium (as a consequence of an
infinite number of response iterations), each DM does not have to know the subjective
probability measures perceived by the other DM, but has to know only the policy adopted
by the other DM at the most recent step of the iteration.

In Section 4 we have presented a counterpart of the results of §3 under the
asymmetric mode of decision making. The conditions derived ensure that the equilibrium
policy of the leader can be obtained as the limit of an infinite sequence which
involves conditional expectations under two different probability measures. This
sequence [(33),(27)] is structurally different from its counterpart in $§3 (see 14),
even for team problems, and it contains R-N derivatives of the two probability
measures as multiplying factors (which are absent in (14)).

In Section 5 we have shown that when the underlying probability distributions
belong to a Gaussian class, the Nash equilibrium solution will be linear (affine, if

mean values are nonzero) in the available static measurements, with the gain operator
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satisfying a Lyapunov-type operator equation (cf. Thm. 3). This solution and the i
g associated existence conditions have been studied further in the context of two

examples which irvrolve scalar and continuous-time stochastic team problems with

multiple probability models. In developing a counterpart of Thm. 3 for asymmetric

mode of decision making, we have arrived at a seemingly surprising (unexpected) result—

-

the unique Stackelberg equilibrium solution being generically nonlinear in the -

measurements (even under Gaussian multiple probability measures). This constitutes .,
e
5

the first unique nonlinear solution reported in the literature for a quadratic Gaussian

X o
static game or team problemf It should be noted that we have not given a closed-form f?

-

expression for this nonlinear solution, but have instead provided a recursive scheme ..
o
ad
which generates admissible policies that come arbitrarily close to the optimum solutiof¥

- Several extensions of the results presented in this paper seem to be possiblfﬁ

v
Y

Firstly, we should note that the general Hilbert-~-space framework adopted in this paper

- '_*

- =
and the general solutions presented for the Gaussian problems in Section 5 (Thms. 3 =

7 and 4) apply to other models also, such as the ones similar to the continuous-time team.

P

s

- problem treated in [9] and the Stackelberg problem of [26], but with the DM's having

different probability models. It is expected that some explicit results (closed-form ia
ny

Y

solutions) can also be obtained in these cases, but this point has not been pursued in

this paper and is left for future research. %

[ g o

Another possible extension of the results of this paper would be to the clasg,_,7

- ..'

B of problems in which the random state of nature (i.e. x) as well as the measurements -~

4

LN
’
»

- (yi) are stochastic processes. The general theories of Sections 3 and 4 could easily

‘D .

t:

{ be extended so as to encompass this class of problems also, provided that the problem

»
L)
- s

- is set up under the right mathematical assumptions. In particular, if the random \

“
s
»

N 'Reference {12] also reports on existence of nonlinear (Nash) solutions for
quadratic Gaussian nonzero-sum games, but there the nonlinear solution is one of many
0 solutions one of which is linear, and is due to nonunique intersection of reaction

N functions (which disappears under appropriate conditions). K

L
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&i variables are taken to be Hilbert space valued weak random variables, with the inner f}

product satisfying some continuity and boundedness conditions [11], Thms. 1-4 directly 2
‘[ apply to this more general class of decision problems, when interpreted in the right i
. framework. Furthermore, extensions to dynamic (multi-stage) problems is also possible, ;

by adopting the framework of (say) [8] for the linear-quadratic-Gaussian problem. Then, i
o the unique Nash equilibrium solution under the one-step-delay observation sharing |
[ pattern can be obtained by basically following the approach of [8] and utilizing in the
= recursive derivation Thm. 3 of this paper instead of Thm. 2 of [8]. Details of this ,
Eg derivation are, however, rather involved, and will be reported elsewhere. y
i Regarding the Nash equilibrium solution, yet another possible extension would ?
i& be to multiple decision-maker problems with more than two (say, N) DM's. Even though }
o, the definition of Nash equilibrium (cf. Def. 1) admits a natural (unique) extension to g
té such problems, that of stable equilibrium (cf. Def. 2) does not extend in a unique way.
ﬁ One viable alternative is to assume that each DM reacts optimally to the set of most

recent policies of all the other DM's, which leads to a set of N relations similar to j
1" )
éf (9). In this case, (12) will be replaced by N equations with the right-hand-side ?
‘. expressions involving N-1 policies of different DM's. However, the line of reasoning !
r that took us from (13) to (14) does not have a counterpart if N>2, and in general it ;
Fj is not possible to obtain N recursion relations each of which involves only one DM's E
i —_——— .
N policies at consecutive stages. Then, the counterpart of (13) will have to be treated
am "
;E as a "multi-valued" operator equation, in which context an existence and uniqueness j
o result will have to be established. This seems to be a challenging problem whose 5
o O
= solution requires somewhat different mathemati- techniques than the ones employed in ;
§: this paper. 5

One source of motivation for the research reported in this paper has been S

o g%

"

(as discussed in Section 1) the desire to investigate the sensitivity and robustness

of team-optimal solutions (in stochastic teams) to independent variations in the

perceptions of the DM's of the underlving probability space (and, in particular, the
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o -

(T

probability measure). The analysis of this paper indeed provides a framework for

such a study when the roles of the DM's are either symmetric or asymmetric, since an

ot

equilibrium theory has been established in both cases within an "e-neighborhood"” of

the team-optimal solution. Some further work is needed in order to determine the

P

"satisfiability" of the several existence conditions obtained in the paper when the ﬁ?

region of interest is an e-neighborhood of a common probability space, and to further -~

-

extend the analysis to an investigation of sensitivity and robustness properties of <
i
team solutions (obtained under the stipulation of existence of a common underlying

probability space) in this e-neighborhood. -
An aspect of the decision problem studied here, which is worth bringing forgh,

i

is that the subjective probability measures perceived by each DM is fixed in advance éi
and the DM's do not attempt to change their subjective priors during the course of théz
decision process. Hence, in this sense, the problem treated here is categorically -

.-'3
different from the class of problems treated in [18}-[21], where the objective was fog;

the DM's to arrive at a common (consistent) set of probabilistic descriptions of the

'
izt

unknown variables. In the symmetric mode, there is, however, an implicit learning '

process built in the recursive process that leads to the stable equilibrium decision

‘-
-

rules for each DM, since the DM's do not necessarily have access to each other's

]
s

perception of the priors.

Yet another aspect of the problem treated in this paper is that the general

formulation could be viewed as a multi-modeling in multiple-decision maker problems;
however, as opposed to the singular perturbations approach of [22]-[24], here the o

multi-modeling is in the probabilistic description of the decision problem, with each

DM having a different probabilistic model of the '"rest of the world."
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Appendix A

In this appendix we state a number of results concerning the spectral

Vet ot

radii of linear bounded operators.

Let A: T-»[ and B: T-T be two linear bounded operators where I' 1is

v

a Hilbert space equipped with the inner product <->. Then the spectral radius

of A is defined by

2E

EE; r(A) = lim sup [<<a¥>>]1/K (A-1)
i ko
™
t# where <<A>> is the norm of A, given by
N
<<A>> = sup [<Ay,Ay> /<Y,Y>]l/2 . (A-2)
YE€T

For self-adjoint operators there is an equivalence between the spectral

radius and norm of an operator; specifically, if A is self-adjoint,

r(A) = <<A>> = sup{|<y,Ay>|/<y,y>} (A-3)
(Ef

[see[13],p, 5147. However, for operators which are not self-adjoint, such

an equivalence does not exist, and one can only provide bounds on r(A):

Lemma A.l.

For any linear bounded operator A,

r(a) < <IA>S = [r(A*A)]l/Z

Przc”. Since A belongs to a Banach algebra, <fAk>> < {<<A>>ik and hence
r(a) < lim sup {|<-a>~ Kp1/K o Llys,
ko
Furthermore, .. ... - sup [<Y,A*AY>/<Y,Y>]1/2
yer
* . .1/2 o, c - -
which is [r(A A)] bv (A-3) because A A is self-adjoint. 3
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;? Lemma A.2. Let A and B be two linear bounded operators which commute. Then, :%
; . * ok * x 1/2 * * .1/2 =
- (1) T(AB + A'B') < 2[r(aA )r(B B)]~/° = 2[r(A A)r(8B )] 5
N (11) r(AB) < r(A)r(B) . ;

f‘.
(SN

*_%
Proof. (i) Since AB + A B 1is self-adjoint, using (A-3)

y-
. * % * % _ % 'ﬂ
r(AB + A'B) = sup{[<y,(AB + A B )y>|/<v,y>} = 2 sup{|<ay,B y>|/<y,y>} >
-, YET YET |
where the equality has followed since A and B commute. Using Cauchy-Schwarz ([3]
;i inequality, this expression can be bounded from above by E;
X 2, % % 41/2 e
: < 2 sup l<av,ay> V2<%, BNy | } &
- YEI“ <Y,Y>
- and performing individual supremization we further obtain the bound %5
. 2 x _* 1/2
) < 2 sup | |<AY,AY> 1/2 sup | |[<B y,B y>[| ' &
YET <Y,Y> YE€T <Y,Y> -
‘i‘ * * * tf
[ - 2 caar> <<B®>> = 2(ra*n)r@s) 12 3
(- where the last line has followed from Lemma A.l. Note that this expression can ii
2 * % * *
ﬁg be written in different ways because r(A A) = r(AA ) , r(BB } = r(B B). .
:¥ (ii) Firstly note that R
r(AB) = lim sup [<<(A13')k>>]l/k = 1lim sup [<<Ak13k>>]l/k (*) ~
koo k= o

where the last equality has followed because A and B commute. Now, since A,B belong _.

to a Banach algebra, <<AkBk>> < <<Ak>> <<Bk>> for every k <=> -
-.:; <=> [<<AkBk>>]1/k < [<<Ak>> <<Bk>>]]'/k = [<<Ak>>]1/k [<<Bk>>]1/k for every k .-
o ' .
~ and taking lim sup of both sides, and using (*) ~
-i |._
‘ r(AB) < lim sup {[<<Ak>\]l/k [<<Bk>>]]'/k < r(A)r(B) 5
ko
which proves the desired result. o s
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Lemma A.3. Let A and B be both self-adjoint. Then, :

r(A + B) < r(A) + r(B) .

Proof. This follows from (A-3) and the triangle inequality applied to norm <<.>>, O

ABEendix B

Proof of Theorem 1
Let us first recall the following result from functional analysis (see, for

example [13, Chapter XIII, Theorem 3]).

Lemma B.l. Let 5 be a linear bounded operator mapping a Hilbert space T into itself,

and consider the equation

Y =8y +u (B-1)
defined on I'. Furthermore, consider the "successive approximation" ﬂ
y(k+1) =y + Sy (k) . k=0,1,... (B-2) _,4
to the solution of (B-1). Then, the sequence generated by (B-2) converges to a ;

unique element of I', for any starting point Y(O)GF, which is further a solution of

(B-1), if, and only if, the spectral radius of § is less than unity, i.e. there

exists a p, 0O<p<l, such that

r(8) <o . (B-3)
a
Now, applying this Lemma to our problem, we identify $ with either 51 or 8,

“

(given by (16)), I with T, or Fz, the successive approximation (B-2) with (14), and

1
condition (B-3) above with (19) for either i=1 or 2. Then, the statement of
Thm. 1 (i) readily follows from the preceding Lemma, in view of Prop. 2.

Furthermore, since Si can be written as the product of two commuting

operators, using Lemma A.2(ii) we obtain

ri(Si)

r (D Pili) <r; (D )ri(Pili)'
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._‘.)
. 1, thereby ensuring (19). {2

«
] )',l‘ '

LR A 'Y

Under (20a) this can be bounded from above by pip; =

‘s &

On the other hand, since the spectral radius of a bounded linear operator is bounded;J

from above by its norm [13], and thatllﬁﬂli = <<D >> because Di also maps U into UE!

T,
¢ o F

v (in addition to being a mapping from Fi into itself), (20b) follows. This completes{i
" the proof of Thm. 1. o

.{ ga
r e
W\

v Appendix C (,_ .
e 1. Proof of Corollary 2 (Section 3) s

Here we verify thut the second inequality of (20b) is implied by the

condition that (2la) is uniformly bounded by p;. Towards this end, we first have,

for each YEFi, from the Cauchy-Buniakowski (Schwarz) inequality [3] applied to Fi:+ ';;
< | = dnly, ] d 2 5
< I lliyﬂ llf Py v, ( n!yl)‘j; Y(E)Pyilyj( Eln)ll < "f Y(E)Py 1y, @efmf 5
> j . Y, :
- j 3 (amyed <

=[ ( vEr @l . fv©pd @y, 23 @ngdom -

- Y, ¥, Y4 Y, yilys g
. j*

g
»

o

« Yty

where the last equality has involved a change of measures, using the R~N derivative

gJ (n). Now, again using the Cauchy-Schwarz inequality, this expression can be bounde@
. from above by

) ; .
. S IEUCHUGIRS 5, de|med (el (n) 3
i Y. ¥ 1 A N
~ ji

~ : . -
o = [ (&), (y(8)) P <da>g (£) f Sy, @nloglm o, 2
) i vi y

y Y, Y3194

. i J

t* where the last equality has followed from Bayes Theorem. It now readily follows thatwd
i} under the condition of Corollary 2, the last expression is bounded from above by )
if c;lﬂ[i, thus proving the desired result for i=1,2, = -
o

- N
W 2. Proof of Corollary 4 (Section &) a
fjﬂ The fact that uniform boundedness of (43a) (by (pz)z) implies the first .-
7 B
-’ inequality of (40b) follows readily from the proof given above, since the spectral A
3y

) “In the following we have abused the notation and have used !-1§ to stand also for =~
‘f the natural norm derived from <.,.>;; but this should not create any source of =
- confusion.

.
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% -
radius of P1|1 ?l|1 is equal to the square of the norm of P Now, to verify that

1]1°
uniform boundedness of (43b) implies the second inequality of (40b) we follow basically
the same line of reasoning, but the detalls of the proof are more involved. Towards

this end we first note that for each YETl,

2
Kyl 1

1 2 2 2 2
I P = P dbly,= b)l
g (&) £ y yl(dnly1 £)g"(n) £ y,13,¢ ly,=n)v ()17

l
z 1

1Vglee) f p?

Yo ly
v, 72171

Wel@s'm [ B | (@lymmyoy
¥, 7172

. (dbly,=n) v ()13

(dniyl=£)gz(n) { Pill ,

| A

where the second equality follows from a change of measures, and the last bound
follows from the Cauchy-Schwarz inequality. It should be pointed out that

here we have abused the notation and have used "-"2 to mean

(dixdn)}l/2

tm(g,m)l, = ([ [ (m(&,n),m(&,n)) g
- 172

1Y,

2
P
1y
where m is a (yl,yz) - measurable random variable taking values in Ul; hence, the

sub-index "2" indicates that the probability space is the one determined by
the subjective probability measure of DM2.

Now, the latter bound can further be bounded above by

1

2 2.2 2
d =
s { iqg © g ! | (dexdn) [ B] |y, (@172 &)y (),

1 172 Yl 1

since (i)

2 2
= l -
(Sf{lelyz(db!y2 ny®) , £1Pyl{yh(db‘y2 n)Y(b))1

2
< élpyl!yz(dbfyz-n)(Y(b),Y(b))l

A S S D S e
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- by the Cauchy-Schwarz 1inequality (because P; |y is also a probability o
x 1172

measure), and (ii) gl(ﬁ)!gz(n)lz > 0. Hence, by interchanging the variables

oIl b

{ & and b,

S PP
A
i

; 2 2 2
. 2 < [ [ ] @@, g ® g’ %2 @bxdn)e? | dnly=e)p? (ae)
¥ Yo ly y
Y. ¥ 172 2191 1
17271 5 ?

L (dn) N
X Y, r
R
2 1 1 2 2 3
- = [ B, @OG@.¥E), [ [ & @ ®g ] 5
J ra
; 2 2 3
\ P dbly,=n)P dnly,=£) i
: A SEnl AL o _

and under (43b) this can be bounded above by o
4 .
- < f P NEIICRICY o2 = o2y 3
. YLS)H»Y 1 4 4 Y 1 > B
.: 1 .

which completes the proof. o -

L~
v
«ta'e

Appendix D

-
B

4 1. Derivation of First and Second Gateaux Variations [(25)-(26)]

- Starting with the expression for J as given by (23), we first obtain j

! *

; a3(vin) & Fovny - J(y)

: 8

3 = % <h,~{>1 + % <Y’h>l + % <h’h>l R

s iﬁ

‘ 1 2.2 2 2 02 2

+ = I

B 5 { ((FRE"[x]y,] + D5 E [v(y |y,], D 27 Dy, ETlh(yDly,D), )

2 ;

9 + 0% B hey ) w1, RS Elixlv.] +

) 21E (G Ivy), DyF; EVlxly, ] + Dj,07; &° “rvply,D), -

-l -

3 + (D2 Ez[h(y yy,1, D £ [h(y ) iv,1), 3 pl (dg)

[/ 21 1 2 2" 21 17'-2°72 Yy

v fo

|

J |

N

B e e e e e o N o e (RO ;‘_,.... e
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: 1.1 _ 2 2 1 1
2
- 1,1 .2 2 1.1 2.2
<h,E7[D],D5 E"[v(y ) [y,] v} + ET[D,FoE [x]y, ]y 1>,

1.1 .2 .2 1.2 1.2
<Y,E7[Dy,D5 E"[h(y ) |y, 1]y, 1> ~ <h,Dy,D5,E7(E (h(y iy, 1y, 1>,

Sj(y;h) + sz(y;h) .

Now, since 63(Y;h) is homogeneous of degree one, and sz(y;h) is homogeneous of degree
two, AJ(y;h) admits a unique decomposition with the corresponding expressions being

(after some simplification)
2 2* 1 22
+ [ E°[h(y |y,1, Dy D5, (FLE [x]y,]

¥y

1.1
+ 05 E vy Iy,1D, Piz(dE) - <b,E(F x|y, 1>

sJ(v3h) = <h,y>,

2 2* 1 1
- [ (E°In(y)|y,], D5 Fox), PT(dx,Y,,dE) (p-1)
117205 DapFa®)y 1
KXY,
* %
12 1 .2.1..2 = 2* 1
= <h,Dy,Dp By |y (yy) + DR (E [xly, 1y 1>y = <Ppjhs DG Dpv>y
*
22 o1 1 2 . 2" 1 2
$7J(vsh) =5 <h.h>y + 5 { (E[h(y)1yyls DyyDyyD5y
2
- (D-2)
2 1 1.2 .
-ESIh(y) [y, Py, (48) = DDy Py

where we have used some properties >f adjoint operators under inner products,
and the notation introduced in (28); we have also made use of the fact that the

.+, commutes with the double conditional

bounded linear operator Dl 1

2
12017 Y
11 (or Pl[l)'

We now prove a lemma which will be used in simplifying these expressions

expectation operator P

further.
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Lemma D.l. For h(-)Gl.ll . f(')Ellz, -3
[Pty ly,mel, €0, By (@) = =

Y2 2 (D_3) i

1 .

[ mm, g ME (g% )Ewr,) ly=nD) By (dn) 3

Y2 1

gt E et e Iy, 1>y “

where gi(‘) are given by (2). .

Prcof. The proof follows from the following set of equalities where we are allowed to’l

change orders of integration because lll and 112 are Hilbert spaces of random variables

well defined under both measures: ".j
[ Gt lyymel, £€0); By @0 = [ ¢/ hmrg | @nlD), £0)P) @)
Y, V2 Y, ¥ 1172 72 I—_-Eh
- [ [ (), £(&) p2 (dn]£)Pt (de) .
Y, ¥, 1 yllyz ) j!
r
= [ [, £@) R @Ely =gt et©)P) @ -
¥, ¥ ¥y Y1

where, in the next to the last line,we have used continuity property of inner product.
in pulling out Pi iy (dyl|F,). Now, pulling the integration over Y, into the ;j
71172 “ '

inner product, we further obtain N
1 2 2

2
= [ 2l @i, [ f@e@r? | @ly,=) g m ,\
Yy yf)'y 1 1 Wy
Y 1 Y 2171

l 2 t"h\

-
1 1 2.2 |

= [ P. (dn)(h(n), g (n) E°[g(y,)E(y,) ]y =n]) N
, Yy 2 2 1 1 N

Y, 71 g
l .
which is the desired result. e é

Now, using (D-3) in (D-2) we obtain

2 1 1 1 2" 1 2 2. 2 2 1 ﬁ
8°J(r3h) = 5 <h,h> + Eé (h(n), g (1030705 E (g7 (v,) BV IRy ) |y, ) 1¥y=nlyPy (4

1 :

e S e e I
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I
- 1 1.2 1 2* l*—*
"5, 1 P . h>, - =
3 MDD P11 T 7 <MDy DyoPy iy
! which verifies (26).
) To verify (25), we apply the result of Lemma D.1 to (D-1) to obtain
- 1 21 2.2 2 2
? 83(y;h) = <h,y>, + <h,g (y)D31Dy, {FZE (g"(y,)E [xl}’z]l}’l]
2 2.2 2, 11
. + 05, E (8" (v E (v (v ) [y, 1y 13>y = <h,FiE [xly 1>,
.'".\.
2* 12 2 1 1.2 2" 15
. i _
- <h,g (y,)D5 FpE (87 (y,)E  [x]y, |y, 17) = <h» (1,050 P ) + D5yDpoPy19)Y>
1 2.1 2 . = - r 4 -
- <h’D12F2E [E [}xlyz]ly1]>l - <h’Y>l <h9~Y>1 <h’3>1

where Z and B are defined by (27a) and (27b), respectively. This then completes

the verification of (25) and (26).

. * el
2. Derivation of an Expression for Pl|1’ the ad;ownc of Pl]l

Firstly note that

% 1 = [ ¢~ 1
[ L GDY Ry @) = [ () B pho)Py @)
1 1

= E Gy EHER Ry Uy, )y DT = BT LG LB Gy [y, D,

where we have used the smoothing property of conditional expectation under the

probability measure Pi . Now, a further conditioning under Pl yields

1 y117,
1,01 2
= ELE [y ly,), ESy Dy, D1,
and using (D-3) [cf. Lemma D-1] this becomes equivalent to

= 1 P I PE v [y, Ty )s )T

thus proving (32). The first expression in (32) follows by routine manipulations.
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388 Appendix E

N

_f:- In this appendix we show that the Stackelberg solution satisfying

((“f (10)-(11) is indeed an equilibrium solution--the so-called strong equilibrium b
ij}“' of a decision problem with a modified (dynamic) information pattern. Towards

A this end, let us replace the original decision problem with one in which the

decision (action) variables are vy EPl and YZEF

e 1 for DM1 and DM2, respectively,

20
fg“; and the information pattern is dynamic (for DM2), with DM2 having access to the

‘b decision Yy of DM1. Let ﬁl and ﬁz denote the strategy spaces of DM1 and DM2, ‘4
respectively, under this new information pattern; furthermore denote their

generic elements by Sl and 82, respectively. Now, since DMI has static

information, all permissible policies 81 will be constant mappings: -~ Fl, and

-1%? hence ﬁl = Fl. For DM2, on the other hand, all permissible policies will be
measurable mappings 82: I'»I,_ . Finally, let ji: ﬁlxﬁ +R be the cost function

1 °2 2

of DMi, satisfying the boundary condition

" 3 = =y €7 .= (E—l)

!{ﬁ} where Y2€F2 is uniquely defined for each Ylerl by

J

(E-2)

-..-" = 1 E-2

e Yo = B 0rp) inl, .

;ti Now, let (Yi,yz)erlez be a Stackelberg solution to the original decision problem :
.::; with the unique mapping T2 satisfying (10). Note that Tzéuz, and hence

-xéf: relabelling T, as B;, and yi as si, in (10) and (11), we obtain in view of (E-1)-(E-2)
I‘-i' - S ‘\S - s - ‘
{ e 2

SaE Iy (Bpa8p) 2 31 (8p58)) e,

) ;
o T (21,85) < J.(8,,8.) ¥(2,,5.)€l, xl

2 2° 7R = T2 P F 1072771

T e s - -

: which clearly indicate that (81,57)Eulxﬂq is a noncooperative Nash equilibrium.

5,;i This is, in fact, a stronger equilibrium (called "strong equilibrium" [17]) because
"i': the second inequality is satisfied not only for 31=3i, but for all sleuﬁ.
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